A key role for foxQ2 in anterior head and central brain patterning in insects

نویسندگان

  • Peter Kitzmann
  • Matthias Weißkopf
  • Magdalena Ines Schacht
  • Gregor Bucher
چکیده

Anterior patterning of animals is based on a set of highly conserved transcription factors but the interactions within the protostome anterior gene regulatory network (aGRN) remain enigmatic. Here, we identify the red flour beetle Tribolium castaneum ortholog of foxQ2 (Tc-foxQ2) as a novel upstream component of the aGRN. It is required for the development of the labrum and higher order brain structures, namely the central complex and the mushroom bodies. We reveal Tc-foxQ2 interactions by RNAi and heat shock-mediated misexpression. Surprisingly, Tc-foxQ2 and Tc-six3 mutually activate each other, forming a novel regulatory module at the top of the aGRN. Comparisons of our results with those of sea urchins and cnidarians suggest that foxQ2 has acquired more upstream functions in the aGRN during protostome evolution. Our findings expand the knowledge on foxQ2 gene function to include essential roles in epidermal development and central brain patterning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Candidate Gene Screen in the Red Flour Beetle Tribolium Reveals Six3 as Ancient Regulator of Anterior Median Head and Central Complex Development

Several highly conserved genes play a role in anterior neural plate patterning of vertebrates and in head and brain patterning of insects. However, head involution in Drosophila has impeded a systematic identification of genes required for insect head formation. Therefore, we use the red flour beetle Tribolium castaneum in order to comprehensively test the function of orthologs of vertebrate ne...

متن کامل

The Bilaterian Head Patterning Gene six3/6 Controls Aboral Domain Development in a Cnidarian

The origin of the bilaterian head is a fundamental question for the evolution of animal body plans. The head of bilaterians develops at the anterior end of their primary body axis and is the site where the brain is located. Cnidarians, the sister group to bilaterians, lack brain-like structures and it is not clear whether the oral, the aboral, or none of the ends of the cnidarian primary body a...

متن کامل

Cooperative Wnt-Nodal Signals Regulate the Patterning of Anterior Neuroectoderm

When early canonical Wnt is experimentally inhibited, sea urchin embryos embody the concept of a Default Model in vivo because most of the ectodermal cell fates are specified as anterior neuroectoderm. Using this model, we describe here how the combination of orthogonally functioning anteroposterior Wnt and dorsoventral Nodal signals and their targeting transcription factors, FoxQ2 and Homeobra...

متن کامل

An anterior signaling center patterns and sizes the anterior neuroectoderm of the sea urchin embryo.

Anterior signaling centers help specify and pattern the early anterior neuroectoderm (ANE) in many deuterostomes. In sea urchin the ANE is restricted to the anterior of the late blastula stage embryo, where it forms a simple neural territory comprising several types of neurons as well as the apical tuft. Here, we show that during early development, the sea urchin ANE territory separates into in...

متن کامل

Which Came First, the Head or the Brain?

The sea anemone, a cnidarian, has no brain. It does have a nervous system, and its body has a clear axis, with a mouth on one side and a basal disk on the other. However, there is no organized collection of neurons comparable to the kind of brain found in bilaterians, animals that have both a bilateral symmetry and a top and bottom. (Most animals except sponges, cnidarians, and a few other phyl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 144  شماره 

صفحات  -

تاریخ انتشار 2017